inverse function - ορισμός. Τι είναι το inverse function
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι inverse function - ορισμός

FUNCTION THAT "REVERSES" ANOTHER FUNCTION: IF THE FUNCTION F APPLIED TO AN INPUT X GIVES A RESULT OF Y, THEN APPLYING ITS INVERSE FUNCTION G TO Y GIVES THE RESULT X, AND VICE VERSA. I.E., F(X) = Y IF AND ONLY IF G(Y) = X
Inverse (function); Inverse map; Inverse operation; Inverse (functions); Invertible function; Inverse operator; Inverse mapping; Inverse functions; Functional inverse; Left inverse function; Function inverse; The Inverse Operation; Inverse process; Inv (function prefix); Compositional inverse; Composition inverse; Anti-function; Antifunction; General inverse function; Partial inverse; Right inverse function
  • The inverse of this [[cubic function]] has three branches.
  • Example of '''right inverse''' with non-injective, surjective function

Inverse trigonometric functions         
  • For a circle of radius 1, arcsin and arccos are the lengths of actual arcs determined by the quantities in question.
  • −2''π''}} respectively.
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
INVERSE FUNCTION OF THE TRIGONOMETRIC FUNCTION
Arcsine; Arctan; Arctangent; Inverse tangent; Arccosine; Cyclometric function; Arc Sine; Arc sine; Arc Cosecant; Arc Cosine; Arc Cotangent; Arc Secant; Arc Tangent; Arcsin; Arccotangent; Arccosec; Arccosecant; Arccot; Arcctg; Inverse cosine; Inverse cotangent; Inverse cosecant; Arccsc; Inverse secant; Inverse sine; Arcsecant; Arctg; Arc cosecant; Arc function; Inverse trigonometric cofunctions; Cyclometric functions; ArcSin; Arc tangent; Arc cosine; Arc cotangent; Arc functions; Arcsin(x); Arccos(x); Arctan(x); Inverse trigonometric function; Inverse trig functions; Inverse trig function; Inverse trig; Inverse trigonometry; Arc trigonometric functions; Cyclometric; Arc- (function prefix); Arcus sinus; Arcus cosinus; Arcus tangens; Arcus secans; Arcus cotangens; Arcus cosecans; Arccos (trigonometry); Arcsin (trigonometry); Arccot (trigonometry); Arccsc (trigonometry); Arcsec (trigonometry); Arctan (trigonometry); Arctg (trigonometric function); Arcctg (trigonometric function); Arcus function; Trigonometric arcus function; Trigonometric arcus functions; Arc-trigonometric functions; Arc-trigonometric function; Arc trigonometric function; Anti-trigonometric function; Anti-trigonometric functions; Antitrigonometric function; Antitrigonometric functions; Arc-sine; Arc-cosine; Arc-tangent; Arc-cotangent; Arc-secant; Arc-cosecant; Anti-sine; Anti-cosine; Anti-tangent; Anti-cotangent; Anti-secant; Anti-cosecant; Antisine; Anticosine; Antitangent; Anticotangent; Antisecant; Anticosecant; Inv sin; Inv cos; Inv tan; Inv cot; Inv sec; Inv csc; Inverse trigonometric sine; Inverse trigonometric cosine; Inverse trigonometric tangent; Inverse trigonometric cotangent; Inverse trigonometric secant; Inverse trigonometric cosecant; Arcsec (trigonometric function); Arcsec (function); Asec (function); Inverse circular function; Inverse circular functions; Arc secant; Inverse trigonometric; Arc (function prefix); Arctangent function; Asin (function); Acos (function); Atan (function)
In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios.
Inverse demand function         
TERM IN MICROECONOMICS
Price function
In economics, an inverse demand function is the inverse function of a demand function. The inverse demand function views price as a function of quantity.
arcsin         
  • For a circle of radius 1, arcsin and arccos are the lengths of actual arcs determined by the quantities in question.
  • −2''π''}} respectively.
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
INVERSE FUNCTION OF THE TRIGONOMETRIC FUNCTION
Arcsine; Arctan; Arctangent; Inverse tangent; Arccosine; Cyclometric function; Arc Sine; Arc sine; Arc Cosecant; Arc Cosine; Arc Cotangent; Arc Secant; Arc Tangent; Arcsin; Arccotangent; Arccosec; Arccosecant; Arccot; Arcctg; Inverse cosine; Inverse cotangent; Inverse cosecant; Arccsc; Inverse secant; Inverse sine; Arcsecant; Arctg; Arc cosecant; Arc function; Inverse trigonometric cofunctions; Cyclometric functions; ArcSin; Arc tangent; Arc cosine; Arc cotangent; Arc functions; Arcsin(x); Arccos(x); Arctan(x); Inverse trigonometric function; Inverse trig functions; Inverse trig function; Inverse trig; Inverse trigonometry; Arc trigonometric functions; Cyclometric; Arc- (function prefix); Arcus sinus; Arcus cosinus; Arcus tangens; Arcus secans; Arcus cotangens; Arcus cosecans; Arccos (trigonometry); Arcsin (trigonometry); Arccot (trigonometry); Arccsc (trigonometry); Arcsec (trigonometry); Arctan (trigonometry); Arctg (trigonometric function); Arcctg (trigonometric function); Arcus function; Trigonometric arcus function; Trigonometric arcus functions; Arc-trigonometric functions; Arc-trigonometric function; Arc trigonometric function; Anti-trigonometric function; Anti-trigonometric functions; Antitrigonometric function; Antitrigonometric functions; Arc-sine; Arc-cosine; Arc-tangent; Arc-cotangent; Arc-secant; Arc-cosecant; Anti-sine; Anti-cosine; Anti-tangent; Anti-cotangent; Anti-secant; Anti-cosecant; Antisine; Anticosine; Antitangent; Anticotangent; Antisecant; Anticosecant; Inv sin; Inv cos; Inv tan; Inv cot; Inv sec; Inv csc; Inverse trigonometric sine; Inverse trigonometric cosine; Inverse trigonometric tangent; Inverse trigonometric cotangent; Inverse trigonometric secant; Inverse trigonometric cosecant; Arcsec (trigonometric function); Arcsec (function); Asec (function); Inverse circular function; Inverse circular functions; Arc secant; Inverse trigonometric; Arc (function prefix); Arctangent function; Asin (function); Acos (function); Atan (function)
¦ abbreviation the inverse of a sine.

Βικιπαίδεια

Inverse function

In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by f 1 . {\displaystyle f^{-1}.}

For a function f : X Y {\displaystyle f\colon X\to Y} , its inverse f 1 : Y X {\displaystyle f^{-1}\colon Y\to X} admits an explicit description: it sends each element y Y {\displaystyle y\in Y} to the unique element x X {\displaystyle x\in X} such that f(x) = y.

As an example, consider the real-valued function of a real variable given by f(x) = 5x − 7. One can think of f as the function which multiplies its input by 5 then subtracts 7 from the result. To undo this, one adds 7 to the input, then divides the result by 5. Therefore, the inverse of f is the function f 1 : R R {\displaystyle f^{-1}\colon \mathbb {R} \to \mathbb {R} } defined by f 1 ( y ) = y + 7 5 . {\displaystyle f^{-1}(y)={\frac {y+7}{5}}.}